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CedCx 05, France 

Received 20 April 1990 

Abstract. A new family of integrable two-dimensional Hamiltonians is found. The corre- 
sponding potentials V ( x ,  y )  are determined by the relation @( V) - y  - x / ( a ,  V + a 2 )  =0, 
where is an arbitrary function and a , ,  a2 are arbitrary parameters. The second constants 
of motion are higher transcendental functions in momenta. These results are found by 
deriving non-separable solutions of the Hamilton-Jacobi equation. 

Finite-dimensional deterministic dynamical systems have been the subject of intensive 
research in recent years. Conservative, as well as dissipative, systems have been 
extensively studied fundamentally with respect to their erratic or chaotic behaviour. 

The typical representatives of conservative systems are Hamiltonian problems of 
classical mechanics which are of great interest to many branches of science like celestial 
mechanics, plasma physics, accelerator dynamics, etc [ 1,2]. A Hamiltonian system is 
said to be completely integrable in the sense of Liouville if it is possible to find N 
independent constants of motion, where N is the number of degrees of freedom (also 
called the dimension) of the system. As is well known, the question of integrability of 
Hamiltonian problems is one of the oldest problems in this field. 

Hamiltonian systems with two degrees of freedom are the simplest problems of 
classical mechanics with non-trivial behaviour: their equations of motion are, in general, 
nonlinear and coupled in a way that makes them non-solvable by standard mathematical 
techniques. In fact, in most cases, they are not Liouville integrable and have large 
scale regions in their phase space within which the orbits wander in a chaotic fashion 
[ 1-31. Nevertheless, a great number of two-dimensional integrable Hamiltonians have 
been found in recent years [4,5]. In general, for a given Hamiltonian, there does not 
exist a necessary and sufficient integrability criterion. The so-called ‘Painlev6 property’ 
(for reviews see [5] and [6] and references therein) seems to be a sufficient but not 
necessary condition for integrability. On the other hand, the non-integrability theorems 
of Ziglin [7] and Yoshida [8] are not yet technically applicable for arbitrary potentials. 

A two-dimensional time-independent Hamiltonian will be integrable if it is possible 
to find a second constant of motion (the first is the Hamiltonian). To obtain it one 
has to solve the partial differential equation resulting from the requirement that the 
Poisson bracket between the Hamiltonian and the second invariant vanishes. However, 
there is no general method to solve this equation and, therefore, some simplifying 
ansatze are derived [4]. In general, it has almost always been assumed that the second 
invariant is polynomial in momenta. In this way, a great number of integrable models 
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have been found [4]. Also, an example of an integrable Hamiltonian with a second 
invariant given by a higher transcendental function in momenta has been presented 
in [9]. This case corresponds to the potential V = x/y. 

In this letter a new family of integrable two-dimensional Hamiltonians is found, 
which contains as a particular case the potential V = x/y  mentioned above. For all 
potentials of this family the second constant of motion is a higher transcendental 
function in momenta. These results are deduced by finding non-separable solutions of 
the Hamilton-Jacobi ( H J )  equation, as follows. Let us consider the Hamiltonian: 

= 8pf ;  +P:) + V(X, Y 1. (1) 

The HJ equation for the characteristic function S(x, y)  is [lo]: 

where E is the constant energy of the system. 
In general, the solutions that have been found for the HJ equation, correspond to 

‘separable’ potentials (i.e. potentials for which the HJ equation becomes separable after 
an adequate change of coordinates) [lo]. In this work we present a procedure that 
enables us to find solutions of the HJ equation for a certain class of non-separable 
potentials. The essential point of this procedure consists of proposing a solution of 
(2) of the following form: 

as as 
-= Fl( V) 
ax ay 

- = F2( V) ( 3 )  

where F, and F2 are functions only of V. By using (2), F2 is determined in terms of F1 : 

F 2 (  V) = J 2 (  E - V) - Ft( V). (4) 
Obviously, the compatibility condition a2S/axay = a2S/ayax must also be imposed, 
from which we obtain 

d F , a V  dF,aV ----- 
d V  a y - d V  ax ’  

dF, aV+ l + F , d F , / d V  _- aV 

Taking into account (4), equation (5) becomes 

- 0. -- 
d V  ay J 2 ( E - V ) - F ? a x  

As F, is a function only of V ,  in order to ensure the coherence of ( 6 ) ,  the following 
condition must be imposed on the potential 

av av -=f( V) - 
ay ax (7) 

where f is an arbitrary function of V. For a given function f, it is easy to show, by 
using the method of characteristic [ 111, that the general solution of the partial differen- 
tial equation (7) for the potential is: 

X 
@( V) - y - - = 0 

f ( V )  
where @ is an arbitrary function of V. 
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When (7) is substituted in (6), we obtain an ordinary differential equation for F1, 
given by: 

1 + F1 dFl/d V 
= 0. dF1 

- f (V) f J2 (E-V) -F :  d V  
(9) 

For a fixed function f; there is a family of potentials defined in an implicit way by (8). 
For each function @, a member of this family is obtained. The HJ equation for the 
corresponding potential is reduced to the first-order ordinary differential equation (9). 
This equation can be simplified by introducing a new function M as follows: 

M2=2(E-V)-F: .  (10) 

It is not difficult to show that, using (lo), equation (9) becomes 

d M  
~ = f ( - f (  M*+ F:) + E)  
dF1 

where we have considered F, as the independent variable. The only integrable case 
of (1 1) corresponds, according to the Painlevt analysis for first order ordinary differen- 
tial equations [ 113, to a linear function f :  

where a,  and a2 are arbitrary parameters. 
For this case, equation (1 1) becomes 

- + - - 1 ~ ~ = - - 1 ~ : + a ~ ~ + a ,  d M  a a 

dF,  2 2 

which is particular case of the Riccati equation [ll]. Its general solution is given by 

2 K(dW/du)(a ,  u)+(dW/du)(a ,  U )  
M(F,)=-  6 KW+(a, U ) +  W-(a, U )  

where K is the constant of integration, W+ and W- are the two standard parabolic 
cylinder functions [ 121, i.e. the two independent solutions of the equation U”( U )  + 
(u2/4-a)u(u)  =O.  The quantities a and U are given by 

a = f ( a , E + a 2 )  

u = G F l .  

From (10) and (14) and the relation aslax =px we obtain: 

KW:+WI_ 
fa , (E  - V)-ia,p:= (KW++ W - )  

where the primes indicate a derivative with respect to U. From this relation, the constant 
K can be expressed in terms of px, py and E :  

This expression gives the second constant of motion for the family of potentials 
determined by (8) and (12). Since the parabolic cylinder functions are entire analytic 
functions for all values of the parameters, we see that the second constant of motion 
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is a single-valued meromorphic function as required by the Liouville theorem. There- 
fore, we have shown that the potentials determined by (8) and (12) are integrable, by 
explicitly determining the second constant of motion (17). We have obtained this result 
by finding non-separable solutions of the HJ equation, through the ansatz (3). 

If we take Q, = 0, a,  = -1 and a2 = 0 in (8) and (12), we obtain the potential V =  x / y  
found by Hietarinta in [9], with the corresponding constant of motion deduced from 
(17) by taking a,  = -1 and a2 = 0. For other functions Q, the resulting potentials are 
not rational functions of x and y. Algebraic or transcendental expressions are obtained, 
such as for example the potential 

v = f ( a , y  + Ja:y2 + 4a2y  + 4x1 (18) 

It is interesting to note that if the energy E is replaced by the Hamiltonian in (17), 
the constant of motion develops, as a function of the coordinates x and y, more 
complicated singularities than a simple pole. In fact, expression (17) is a ‘simple’ 
meromorphic function only on each surface of constant energy E. It is not a global 
meromorphic function in the complete phase space. 

As it has been shown by Hietarinta in [9], the ‘weak PainlevC’ analysis does not 
work for this type of potential (more precisely for the particular case V =  x / y ,  but it 
is reasonable to assume that his analysis is valid for all potentials defined by (8) and 
(12)). Therefore, the coordinates x and y have, as functions of time, more complicated 
movable singularities than poles. 

This fact enables us to understand why the second constant of motion (17) is not 
globally analytical in phase space. Its ‘additional’ singularities are necessary in order 
to compensate the more complex structure of singularities (when compared with cases 
for which the ‘weak PainlevC’ property is satisfied) of x and y as functions of time. 
This compensation is necessary in order to obtain a constant of motion after replacing 
all phase space variables in (17) as functions of time. 

Finally, it would be interesting to generalise the method applied in this work to 
higher-dimensional Hamiltonians. 

I wish to thank B Grammaticos and A Ramani for useful discussions and a critical 
reading of the manuscript. 
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